-
for pdf click here::
for pdf click here::
- Decimalto Other Base System
- Other Base Systemto Decimal
- Other Base Systemto Non-Decimal
- Shortcut method - Binary to Octal
- Shortcut method - Octalto Binary
- Shortcut method - Binary to Hexadecimal
- Shortcut method - Hexadecimalto Binary
- Decimal to Other Base System
- Steps
- Step 1 - Divide the decimalnumber to be converted by the value of the new base.
- Step 2 - Getthe remainder fromStep 1 as the rightmost dig it(least significant dig it) of new base number.
- Step 3 - Divide the quotient of the previous divide by the new base.
- Step 4 - Record the remainder fromStep 3 as the next dig it(to the left) of the new base number.
- Repeat Steps 3 and 4, g etting remainders fromrightto left, untilthe quotient becomes zero inStep 3.
- The last remainder thus obtained will be the most significant dig it(MSD) of the new base number.
- Example
- DecimalNumber: 2910
- Calculating Binary Equivalent:
- Step Operation Result Remainder
- Step 1 29 / 2 14 1
- Step 2 14 / 2 7 0
- Step 3 7 / 2 3 1
- Step 4 3 / 2 1 1
- Step 5 1 / 2 0 1
- As mentioned inSteps 2 and 4, the remainders have to be arrang ed inthe reverse order so thatthe first
- remainder becomes the least significant dig it(LSD) and the last remainder becomes the most significant dig it
- (MSD).
- DecimalNumber: 2910 = Binary Number: 111012.Other base system to Decimal System
- Steps
- Step 1 - Determine the column(positional) value of eachdig it(this depends onthe positionof the dig it and
- the base of the number system).
- Step 2 - Multiply the obtained columnvalues (inStep 1) by the dig its inthe corresponding columns.
- Step 3 - Sumthe products calculated inStep 2. The totalis the equivalent value indecimal.
- Example
- Binary Number: 111012
- Calculating DecimalEquivalent:
- Step Binary Number Decimal Number
- Step 1 111012 ((1 x 2
- 4) + (1 x 23) + (1 x 22) + (0 x 21) + (1 x 20))10
- Step 2 111012 (16 + 8 + 4 + 0 + 1)10
- Step 3 111012 2910
- Binary Number: 111012 = DecimalNumber: 2910
- Other Base System to Non-Decimal System
- Steps
- Step 1 - Convertthe orig inalnumber to a decimalnumber (base 10).
- Step 2 - Convertthe decimalnumber so obtained to the new base number.
- Example
- OctalNumber: 258
- Calculating Binary Equivalent:
- Step 1: Convert to Decimal
- Step Octal Number Decimal Number
- Step 1 258 ((2 x 8
- 1) + (5 x 8
- 0))10
- Step 2 258 (16 + 5 )10
- Step 3 258 2110
- OctalNumber: 258 = DecimalNumber: 2110
- Step 2: Convert Decimal to BinaryStep Operation Result Remainder
- Step 1 21 / 2 10 1
- Step 2 10 / 2 5 0
- Step 3 5 / 2 2 1
- Step 4 2 / 2 1 0
- Step 5 1 / 2 0 1
- DecimalNumber: 2110 = Binary Number: 101012
- OctalNumber: 258 = Binary Number: 101012
- Shortcut method - Binary to Octal
- Steps
- Step 1 - Divide the binary dig its into g roups of three (starting fromthe right).
- Step 2 - Convert eachg roup of three binary dig its to one octal dig it.
- Example
- Binary Number: 101012
- Calculating OctalEquivalent:
- Step Binary Number Octal Number
- Step 1 101012 010 101
- Step 2 101012 28 58
- Step 3 101012 258
- Binary Number: 101012 = OctalNumber: 258
- Shortcut method - Octal to Binary
- Steps
- Step 1 - Convert eachoctal dig itto a 3 dig it binary number (the octal dig its may be treated as decimalfor
- this conversion).
- Step 2 - Combine allthe resulting binary g roups (of 3 dig its each) into a sing le binary number.
- Example
- OctalNumber: 258
- Calculating Binary Equivalent:
- Step Octal Number Binary Number
- Step 1 258 210 510Step 2 258 0102 1012
- Step 3 258 0101012
- OctalNumber: 258 = Binary Number: 101012
- Shortcut method - Binary to Hexadecimal
- Steps
- Step 1 - Divide the binary dig its into g roups of four (starting fromthe right).
- Step 2 - Convert eachg roup of four binary dig its to one hexadecimal symbol.
- Example
- Binary Number: 101012
- Calculating hexadecimalEquivalent:
- Step Binary Number Hexadecimal Number
- Step 1 101012 0001 0101
- Step 2 101012 110 510
- Step 3 101012 1516
- Binary Number: 101012 = HexadecimalNumber: 1516
- Shortcut method - Hexadecimal to Binary
- Steps
- Step 1 - Convert eachhexadecimal dig itto a 4 dig it binary number (the hexadecimal dig its may be treated
- as decimalfor this conversion).
- Step 2 - Combine allthe resulting binary g roups (of 4 dig its each) into a sing le binary number.
- Example
- HexadecimalNumber: 1516
- Calculating Binary Equivalent:
- Step Hexadecimal Number Binary Number
- Step 1 1516 110 510
- Step 2 1516 00012 01012
- Step 3 1516 000101012
- HexadecimalNumber: 1516 = Binary Number: 101012
No comments:
Post a Comment